1			$\begin{aligned} & \|3-2 x\|=4\|x\| \\ & \Rightarrow \quad 3-2 x=4 x, x=1 / 2 \\ & \text { or } \quad 3-2 x=-4 x, x=-11 / 2 \end{aligned}$ or $\begin{aligned} & (3-2 x)^{2}=16 x^{2} \\ & \Rightarrow 12 x^{2}+12 x-9[=0] \\ & \Rightarrow x=1 / 2,-11 / 2 \end{aligned}$	M1A1 M1A1 M1 A1 A1 A1 [4]	not $3 /(-2)$ squaring both sides correct quadratic o.e. but with single x^{2} term	If 3 or more final answers offered, -1 for each incorrect additional answer -1 for final ans written as an inequality $(3-2 x)^{2}=4 x^{2}$ is M0

| 2 | $\|$$1<x<3 \Rightarrow$ $-1<x-2<1$
 \Rightarrow $\|x-2\|<1$ | B1 B1
 [2] | oe
 [or $a=2$ and $b=1]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

3	(i)	$\begin{aligned} & a=1 / 2 \\ & b=1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	or 0.5
	(ii)	$\begin{aligned} & 1 / 2\|x+1\|=\|x\| \\ & \Rightarrow 1 / 2(x+1)=x, \\ & \Rightarrow x=1, y=1 \\ & \text { or } 1 / 2(x+1)=-x, \\ & \Rightarrow x=-1 / 3, y=1 / 3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	o.e. ft their $a(\neq 0), b$ (but allow recovery to correct values) or verified by subst $x=1, y=1$ into $y=1 / 2\|x+1\|$ and $y=\|x\|$ unsupported answers M0A0 o.e., ft their $a . b$; or verified by subst $(-1 / 3,1 / 3)$ into $y=1 / 2\|x+1\|$ and $y=\|x\|$ or $0.33,-0.33$ or better unsupported answers M0A0
		or $\begin{gathered} 1 / 4(x+1)^{2}=x^{2} \\ \Rightarrow 3 x^{2}-2 x-1=0 \\ \Rightarrow x=-1 / 3 \text { or } 1 \\ y=1 / 3 \text { or } 1 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { M1ft } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	ft their a and b obtaining a quadratic $=0, \mathrm{ft}$ their previous line, but must have an x^{2} term SC3 for $(1,1)(-1 / 3,1 / 3)$ and one or more additional points

$\mathbf{4}$	$\|2 x+1\| \geq 4$			
\Rightarrow	$2 x+1 \geq 4 \Rightarrow x \geq 11 / 2$			
or	$2 x+1 \leq-4 \Rightarrow x \leq-2^{1 / 2}$	\quad	M1 A1	
:---	:---			
	M1 A1			
[4]	allow M1 for $11 / 2$ seen			
allow M1 for $-2^{1 / 2}$ seen	Same scheme for other methods, e.g. squaring, graphing			

$\mathbf{5}$	$\|2 x-1\|=\|x\|$			
\Rightarrow	$2 x-1=x, x=1$			
or	$-(2 x-1)=x, x=1 / 3$	\quad M1A1	M1A1	www www, or $2 x-1=-x$ must be exact for A1 (e.g. not 0.33, but allow 0.3$)$ condone doing both equalities in one line e.g. $-x=2 x-1=x$, etc
:---	:---		and from graph	
:---				
or squaring $\Rightarrow 3 x^{2}-4 x+1=0$ M1				
$\Rightarrow(3 x-1)(x-1)=0$ M1 factorising, formula or comp. square				
$\Rightarrow x=1,1 / 3$ A1 A1 allow M1 for sign errors in factorisation				
-1 if more than two solutions offered, but isw inequalities				

| $\text { 6 } \quad \operatorname{fg}(x)=\|x+1\|$ | $\operatorname{gf}(x)=\|x\|+1$ | B1 B1 B1 B1 [4] | ```soi from correctly-shaped graphs (i.e. without intercepts) graph of \(\|x+1|\) only graph of \(|x|+1\)``` | but must indicate which is which bod gf if negative x values are missing
 ' V ' shape with $(-1,0)$ and $(0,1)$ labelled
 ' V ' shape with $(0,1)$ labelled $(0,1)$ |
| :---: | :---: | :---: | :---: | :---: |

```
7 |x-1|<3=>-3<x-1<3
=> -2<x<4
```

or $x-1= \pm 3$, or squaring \Rightarrow correct quadratic \Rightarrow $(x+2)(x-4)$ (condone factorising errors) or correct sketch showing $y=3$ to scale $-2<$ $<4 \quad$ (penalise \leq once only)

$\mathbf{8}$	$\mathrm{g}(x)=2\|x-1\|$		
\Rightarrow	$b=2\|0-1\|=2$ or $(0,2)$		
	$2\|x-1\|=0$		
\Rightarrow	$x=1$, so $a=1$ or $(1,0)$	B1	Allow unsupported answers.
www			
M1	$\|x\|=1$ is A0		
A1	[3]	www	

9	$\|2 x-1\| \leq 3$		
\Rightarrow	$-3 \leq 2 x-1 \leq 3$	M1	$2 x-1 \leq 3 \quad$ (or $=$)
\Rightarrow	$-2 \leq 2 x \leq 4$	A1	$x \leq 2$
\Rightarrow	$-1 \leq x \leq 2$	M1	$2 x-1 \geq-3($ or $=)$
or	$(2 x-1)^{2} \leq 9$		$x \geq-1$
\Rightarrow	$4 x^{2}-4 x-8 \leq 0$	M1	squaring and forming quadratic $=0$ (or \leq)
\Rightarrow	$(4)(x+1)(x-2) \leq 0$	A1	factorising or solving to get $x=-1,2$
\Rightarrow	$-1 \leq x \leq 2$	A1	$x \geq-1$
		A1	$x \leq 2$ (www)

10 (i) P is $(2,1)$	B1	
$\begin{aligned} & \text { (ii) }\|x\|=1 \frac{1}{2} \\ & \Rightarrow x=\left(-1 \frac{1}{2}\right) \text { or } 1 \frac{1}{2} \\ &\|x-2\|+1=1 \frac{1}{2} \Rightarrow\|x-2\|=\frac{1}{2} \\ & \Rightarrow x=\left(2 \frac{1}{2}\right) \text { or } 1 \frac{1}{2} \end{aligned}$	M1 M1 E1	allow $x=11 / 2$ unsupported or $\left\|1 \frac{1}{2}-2\right\|+1=\frac{1}{2}+1=1 \frac{1}{2}$
or by solving equation directly: $\begin{aligned} & \|x-2\|+1=\|x\| \\ \Rightarrow & 2-x+1=x \\ \Rightarrow & x=1 / 12 \\ \Rightarrow & y=\|x\|=11 / 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & {[4]} \end{aligned}$	equating from graph or listing possible cases

$\mathbf{1 1}$	$\|3 x-2\|=x$		
\Rightarrow	$3 x-2=x \Rightarrow 2 x=2 \Rightarrow x=1$		
or	$-3 x=x \Rightarrow 2=4 x \Rightarrow x=1 / 2$		
or	$(3 x-2)^{2}=x^{2}$	B1	$x=1$
$\Rightarrow 8 x^{2}-12 x+4=0 \Rightarrow 2 x^{2}-3 x+1=0$	M1 A1		
$\Rightarrow(x-1)(2 x-1)=0$,			
$\Rightarrow x=1,1 / 2$	M1 A1	solving correct quadratic	
	[3]		

$\begin{aligned} & 12 \quad \begin{aligned} & 3 x+2=1 \Rightarrow x=-1 / 3 \\ & 3 x+2=-1 \end{aligned} \\ & \Rightarrow x=-1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$x=-1 / 3$ from a correct method - must be exact
$\begin{array}{ll} \text { or } & (3 x+2)^{2}=1 \\ \Rightarrow & 9 x^{2}+12 x+3=0 \\ \Rightarrow & 3 x^{2}+4 x+1=0 \\ \Rightarrow & (3 x+1)(x+1)=0 \\ \Rightarrow & x=-1 / 3 \text { or } x=-1 \end{array}$	M1 B1 A1 [3]	Squaring and expanding correctly $\begin{aligned} & x=-1 / 3 \\ & x=-1 \end{aligned}$

